Electron-Matter Interactions in TEM: list of symbols and definitions

 λ Electron wavelength (elastic scattering theory)

Inelastic scattering mean free path (EELS)

p Momentum of electron

 ψ Wave function

 \vec{k} Wave vector

 $\left|\overrightarrow{\boldsymbol{k}}\right| = k = \frac{1}{\lambda}$

 $\overline{k_0}$ Incident wave vector

 \vec{k}' Scattered wave vector

 $\vec{q} = \vec{k'} - \vec{k_0}$ Scattering vector

h Planck's constant

 $\hbar = \frac{h}{2\pi}$ Reduced Planck's constant

 $\vec{q} \cdot h$ Momentum change of scattering

 m_0 Rest mass of electron

m Relativistic mass of electron

e Magnitude of the charge of the electron

c Speed of light

v Speed of electron

 E_0 Elastic scattering lectures: high tension/accelerating voltage (V)

EELS lectures: energy of incident electron beam (eV)

 $E_{\rm kin}$ Kinetic energy of electron

 $E_{\rm el}$ Total energy of electron

 E_{eig} Energy of wave function eigenstate

ν Time frequency of electron wave

 ω Angular time frequency of wave function

W Relativistic total energy of electron

 \widehat{H} Hamiltonian operator

 \hat{E} Energy operator

 \hat{p} Momentum operator

 $V(\vec{r},t)$ Potential energy in function of position \vec{r} , time t

(i.e. potential energy operator)

 $\phi(\vec{r})$ Potential distribution of atom or lattice

 ϕ_0 Mean potential of a medium/crystal

*U*_i Mean inner potential

 $\rho_{\rm n}$ Charge density of nucleus

 $\rho_{\rm e}$ Charge density of atomic electrons

*a*₀ Bohr radius

 ε_0 Permittivity of free space

n Refractive index

 θ Scattering semi-angle (diffraction) / Scattering angle (EELS)

 $\theta_{\rm B}$ Bragg angle

 \vec{g} Diffraction vector

 $\vec{a}, \vec{b}, \vec{c}$ Real space lattice vectors

 $\overrightarrow{a^*}, \overrightarrow{b^*}, \overrightarrow{c^*}$ Reciprocal lattice vectors

(h k l) Crystal plane with Miller indices h, k, l

[UVW] Lattice vector $U\vec{a} + V\vec{b} + W\vec{c}$

 $V_{\rm c}$ Volume of the unit cell

 σ Scattering cross-section

 Ω Solid angle